GI Microb-X is a blend of botanical extracts with a long history of use as natural antimicrobials. The ingredients provide a broad spectrum of activity against the most common pathogens present in the human GI tract in conditions of dysbiosis, while being relatively sparing of normal flora. The botanical substances in GI Microb-X are also commonly represented on sensitivity testing provided by the major functional laboratories performing stool analysis. The recommended usage for this product is two capsules upon arising and 2 capsules at bedtime. Change to taking with a meal if it causes stomach upset.

GI Microb-X Features:

- **Tribulus terrestris** (also known as puncture vine), a member of the Zygophyllaceae family, is an annual herb found in many tropical and moderate areas of the world, including the US and Mexico, the Mediterranean region, and throughout Asia. Its health and medicinal effects are the result of active phytochemicals including steroidal saponins currently referred to by medical researchers and physicians as X steroidal saponins. These X steroidal saponins have the ability to influence the entire immune system of the body and have been shown to have anti-bacterial and anti-viral effects.

- **Berberine** is a bitter-tasting, yellow, plant alkaloid with a long history of medicinal use in Chinese and Ayurvedic medicine. Berberine is present in the roots, rhizomes and stem bark of various plants including Berberis aquifolium (Oregon grape), Berberis vulgaris (barberry), Hydrastis canadensis (goldenseal), Coptis chinensis (coptis or goldthread), and Berbers arista (tree turmeric). Berberine has also been used historically as a dye, due to its yellow color. Varma first documented the use of berberine in 1933 for the eye infection chronic trachoma. There is clinical evidence to support berberine’s use in the treatment of bacterial diarrhea. Berberine has also shown antimicrobial activity against bacteria, viruses, fungi, protozoans, helminths (worms), and chlamydia.

- **Artemesia annua** (Wormwood) demonstrates significant antimicrobial effects and has been traditionally used even in the treatment of malaria. It has a particular historic use of being used to treat parasitic gastrointestinal infections. It is derived from the inner bark (wood) of the Artemesia annua tree and it kills parasites (worms), therefore it became known by the common name of wormwood.

- **Juglans nigra** (Black Walnut) also has a long history of use as an intestinal anti-parasitic (i.e. vermifuge, antihelmitic) in botanical medicine. It also possesses activity against common bacterial and fungal pathogens that occur in GI dysbiosis.

- **Grapefruit and other citrus seed extracts** have long been used as antiseptics. They have been most specifically applied clinically to reduce fungal overgrowth by such common organisms as candida and geotrichum. Citrus seed extract also has demonstrated antibacterial function, most notoriously with hemolytic coliform bacteria.

- **Arctostaphylos uva ursi** is grown throughout Asia, North America, and Europe and has a long history of medicinal use dating back to the 13th Century. The leaves have been used worldwide as a diuretic, astringent, antiseptic and treatment for urinary tract and gastrointestinal infections. A tea brewed with the leaves has also been used as a laxative. Arbutin, the main chemical constituent of uva ursi, is a phenolic glycoside that becomes hydrolyzed to hydroquinone. Both chemicals contribute to the antiseptic effects in the urinary tract and GI tracts. Other active constituents include tannins, mono and triterpenes, and flavonoids. Arbutin alone has also been reported to relieve pain from kidney stones, cystitis and nephritis.

- **Caprylic acid** is the common name for the eight-carbon straight chain fatty acid known by the systematic name octanoic acid. It is found naturally in palm and coconut oil, and in breast milk. Doctors and nutritionists often recommend caprylic acid for use in treating candidiasis and bacterial infections. Due to its relatively short chain length it has no difficulty in penetrating fatty cell walls, whereas its effectiveness in combating certain lipid-coated bacteria, such as Staphylococcus aureus, various species of Streptococcus, and intramuscular Candida. Caprylic acid may affect the fluidity of viral and fungal cell membranes. The lactoperoxidase system in combination with caprylic acid can inhibit the growth of Escherichia coli and Staphylococcus aureus in food. Studies have reported that dietary caprylic acid inhibits the growth of Candida albicans and other opportunistic fungi in both the small and the large intestine. At the same time, caprylic acid does not seem to adversely affect the growth of beneficial intestinal microflora.

References: